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Abstract
Pushing a fluid with a less viscous one gives rise to the well known Saffman–
Taylor instability. This instability is important in a wide variety of applications
involving strongly non-Newtonian fluids that often exhibit a yield stress.
Here we investigate the Saffmann–Taylor instability in this type of fluid, in
longitudinal flows in Hele–Shaw cells. In particular, we study Darcy’s law
for yield stress fluids. The dispersion equation for the flow is similar to the
equations obtained for ordinary viscous fluids but the viscous terms in the
dimensionless numbers conditioning the instability now contain the yield stress.
This also has repercussions on the wavelength of the instability as it follows
from a linear stability analysis. As a consequence of the presence of yield stress,
the wavelength of maximum growth is finite even at vanishing velocities. We
study Darcy’s law and the fingering patterns experimentally for a yield stress
fluid in a linear Hele–Shaw cell. The results are in rather good agreement
with the theoretical predictions. In addition we observe different regimes that
lead to different morphologies of the fingering patterns, in both rectangular and
circular Hele–Shaw cells.

1. Introduction

The so-called Saffman–Taylor instability has received much attention as an archetype of pattern
forming systems, both theoretically and experimentally [1–3]. Most natural and industrial
materials are non-Newtonian fluids. It is thus also important from a practical point of view
to understand the instability in such ‘complex fluids’. Lately, this instability has also been
studied for non-Newtonian fluids, for which strikingly different fingering patterns are found.
The physical origin of the very different structures is so far ill understood, mainly because
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most of these fluids exhibit multiple visco-elastic characteristics, which were not determined
simultaneously. Very recently, fingering in yield stress fluids was studied both theoretically [4]
and experimentally [5]. The theory on yield stress fluids has revealed that the Saffman–Taylor
instability is modified drastically. Notably, as a consequence of the presence of yield stress, the
wavelength of maximum growth is finite even at vanishing velocities, a result that was nicely
confirmed by our experiment. Here we investigate the instability for a typical yield stress
fluid: a polymer gel in a linear Hele–Shaw cell. Furthermore, we measure the applied pressure
gradient during the viscous fingering experiment. For Newtonian fluids, Darcy’s law gives
the proportionality between the applied pressure gradient and the finger velocity. Darcy’s law
is the starting point of all theoretical treatments of the Saffman–Taylor instability. It is thus
also important to study its applicability to non-Newtonian fluids, which we do in the present
experiment.

2. Experiments and results

2.1. Characterization of the gel

As a yield stress fluid, we use a water based polymer gel6 at different dilutions. To obtain the
visco-elastic properties of the gel, a rheological study is done. Figure 1(a) depicts the shear
stress as a function of the shear rate obtained using a Coutte geometry on a Reologica Stress
Tech Reometer for a series of dilutions of the gel. It turns out that the flow behaviour of the
gel is very well described by the Herschel–Bulkley model:

σ = σy + k1γ̇
n (1)

in which σ is the shear stress and γ̇ is the shear rate. The shear thinning exponent, n, is found
to be close to 0.4 for all dilutions (figure 1).

2.2. Experimental set-up

The experiments were performed in a rectangular Hele–Shaw cell (figure 3) consisting of two
glass plates separated by a thin Mylar space, fixing the plate spacing b at 0.25 or 0.75 mm. The
channel width W is chosen to be 4 cm. The cell is filled with gel, and compressed air is used
as the, less viscous, driving fluid. The applied pressure can be modified to obtain different
finger velocities. The fingers are captured by a CCD camera coupled to a VCR. We also used
a circular cell with b = 0.25 mm, in which the air is pushed into the gel, from the centre
(figure 7).

2.3. Darcy’s law

For Newtonian fluids, the relation between the velocity of the finger and the applied pressure
gradient is derived in a trivial way from the Navier–Stokes equation. For the specific geometry
of the Hele–Shaw cell, neglecting the inertial term for slow flow between the two glass plates
under an applied pressure gradient, one can average the parabolic velocity profile over the gap
to obtain

v = −b2/(12µ)∇ p (2)

µ is the viscosity of the viscous fluid, b the plate spacing and v the average velocity of the fluid
far away from the finger. To treat the Saffman–Taylor instability for non-Newtonian fluids, one

6 Commercial hair gel: ‘HEMA’ XX strong.
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Figure 1. (a) Shear stress as a function of shear rate for different dilutions of the gel. 100 wt%
(dots) gel, 50 wt% gel (squares), 42 wt% gel (diamonds) and 33 wt% gel (triangles). (b) Yield
stress as a function of the gel and linear fit to the data.

may attempt to replace the constant viscosity µ by a shear dependent viscosity µ(γ̇ ) leading
to a modified Darcy law:

v = −b2/(12µ(γ̇ ))∇ p. (3)

This modified Darcy law is widely used [6, 7]. Kondic et al [8, 9] have shown theoretically
that, for weak shear thinning (and in the absence of a yield stress), one may replace the
constant Newtonian viscosity by a shear-thinning viscosity in order to obtain this modified
flow equation, which is verified experimentally for weak shear thinning [10]. Our viscous
fingering experiment allows us to perform a direct experimental study of the validity of the
modified Darcy law for yield stress fluids.
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Figure 2. Darcy’s law: (a) average velocity versus applied pressure gradient and power law fit to
the data. (b) Shear stress as a function of the shear rate from viscous fingering experiments (empty
circles) and rheological measurements (filled circles).

We thus study the relation between v and the applied pressure gradient. The pressure
gradient is defined as ∇ p = �p/�l. The outlet of the cell is at the atmospheric pressure
p0 and the entrance is at the applied pressure p (measured with a standard manometer). The
pressure in the finger can be considered to be constant and equals the applied pressure p. �l is
the distance between the finger tip and the outlet of the cell. The plotting of v as a function of ∇ p
is shown in figure 2(a). Qualitatively, it can be observed that for the gel v is not a linear function
of ∇ p, in contrast to the case for a Newtonian fluid. Quantitatively, the relation between v and
∇ p can be compared to the predictions of the modified Darcy law (equation (3)). To do so,
we calculate µ from equation (2) for every point v(∇ p) measured. The average shear rate in
the Hele–Shaw cell for a certain v is obtained by taking the average of the velocity gradient
of the parabolic flow profile over the spacing between the two plates; in this way, one obtains
γ̇ = 3v/b. This leads to results of the form µ(γ̇ ), or identically σ(γ̇ ) which can be compared
directly to rheological measurements of the shear-rate-dependent viscosity. This is done in
figure 2(b), from which it is clear that the results of the two independent experiments are in
good agreement with each other. The modified Darcy law (equation (3)) thus seems to be well
satisfied.
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Figure 3. Snapshots of the observed fingering patterns in a 50 wt% dilution: yield stress regime
(top) and viscous regime (middle) and side-branching regime (bottom).

2.4. Viscous fingering in a linear Hele–Shaw cell

The viscous fingering experiments are performed in a rectangular Hele–Shaw cell consisting
of two glass plates separated by a thin Mylar spacer, fixing the plate spacing b at 0.25 mm. The
channel width W is chosen to be 4 cm. The cell is filled with gel, and compressed air is used
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Figure 4. Wavelength measured in the yield stress regime when changing the yield stress. Dilation
(closed circles) of 100 wt%, 50 wt%, 42 wt% and 33 wt% of gel are shown keeping the plate
spacing b = 0.25 mm unchanged. Wavelength (open circle) for a plate spacing of b = 0.75 mm
and 100 wt% of gel.

as the, less viscous, driving fluid. The applied pressure can be modified to obtain different
finger velocities. The fingers are captured by a CCD camera coupled to a VCR. This allows
for measurements of the width w as a function of the velocity v of the finger.

For very low velocities (v < 0.01 cm s−1) we find ramified structures of the fingers; for low
velocities only one finger continues to propagate through the cell, in the middle of the channel.
Figure 3 shows the three regimes for the 50% diluted gel. For low velocities (v < 0.03 cm s−1)
the finger width does not depend on the finger velocity. For higher velocities (v > 0.1 cm s−1)
the finger width decreases with the finger velocity. A third regime appears when we lower the
yield stress. At higher speeds (v > 2 cm s−1), the single finger propagating in the middle of
the cell destabilizes to form a ramified pattern, as shown in figure 3.

2.4.1. Yield stress regime. For a Newtonian fluid, the most unstable wavelength that follows
from the linear stability analysis is

λ ≈ b

√(
γ

Uµ

)
(4)

in which γ is the surface tension. The total viscous stress can be approximated as σ ≈ µU/b
where the shear rate is approximated by γ̇ ≈ U/b. For a yield stress fluid, the total stress is
given by equation (1), which in the limit of U → 0 yields σ = σy . If we now simply replace
the viscous stress in equation (4) by the yield stress, we obtain

λ ≈
√

bγ

σy
. (5)

So if we identify λ with the finger width, it should vary as the square root of the plate spacing,
and the inverse square root of the yield stress. Figure 4 presents the results for the finger
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Figure 5. (a) Lambda as a function of the finger velocity U measured in the viscous regime for
different dilutions of the gel: 100 wt% (squares), 50 wt% (circles) and 33 wt% (triangles), (b)
Lambda as a function of the capillary number Ca in the viscous regime for different dilutions of
the gel: 100 wt% (squares), 50 wt% (circles) and 33 wt% (triangles).

width as a function of the new control parameter suggested by equation (5). The agreement is
favourable.

2.4.2. Viscous regime. For higher velocities (see figure 1(a)); the fluid behaves like an
ordinary viscous fluid which exhibits shear thinning. The power index n of the Herschel–
Bulkley model (equation (1)) is found to be ≈0.4 for all dilutions. The data for the finger
width are summarized in figure 5, from which it is evident that the finger width in the viscous
regime decreases with increasing finger velocity and that the relative finger width λ = w/W
is much smaller than the classical limit λ = 0.5. When trying to rescale the results on
1/B = Ca (W/b)2 (Ca = µU/γ is the capillary number), the control parameter for Newtonian
fluids, where the viscosity has been replaced by the shear thinning viscosity, one finds that
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Figure 6. Snapshots of the fingering patterns observed in the circular cell for the undiluted gel: (a)
yield stress regime, (b) viscous regime and (c) side-branching regime.

the results do not collapse onto a single curve. This is surprising, since although the yield
stress can be very different for the different dilutions of the gel, the shear-thinning exponent
is not (figure 1(a)). We must therefore conclude that the observed difference between the
different dilutions is due to another effect. The effect of normal stresses, if present, leads to
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Figure 7. Snapshot of a ‘dublon’ in the undiluted gel in the circular cell.

larger fingers [11, 12]. Rheology measurements indeed reveal the presence of normal stresses,
which of course become less important if the gel is more diluted; this seems to be a plausible
explanation for the differences observed in figure 5.

2.4.3. Side-branching regime. In this regime, the speeds are high; therefore, it seems likely
that yield stress effects are completely absent; we are effectively dealing with a shear-thinning
fluid. If the control parameter 1/B = Ca (W/b)2 becomes larger than a certain value
(1/B ≈ 5000, in general) the finger becomes unstable against tip splitting [13]. For the
gel, we occasionally do observe tip splitting, but the observed ramifications mainly come from
side-branching instabilities (figure 3). This is in fact a typical observation made for shear-
thinning fluids [12]: shear thinning stabilizes the finger tip against tip splitting. Suppression
of tip splitting is also found theoretically for shear-thinning fluids [14, 15].

2.5. Viscous fingering in circular geometry

The three regimes presented in the rectangular cell have also been recognized in our experiment
in the circular Hele–Shaw cell. The results are summarized in figure 6. We have also
observed the so-called dublon effect at very high velocities which was observed formerly
in the solidification (figure 7).

3. Discussion and conclusion

We have demonstrated that the Saffman–Taylor instability is drastically modified in yield stress
fluids. We identify three different regimes that lead to different morphologies of the fingering
patterns. The presence of a yield stress leads to very branched patterns at low velocity, where
the yield stress plays an important role. For somewhat higher velocities only a single stable
finger is observed. At even higher speeds, the finger propagation in the centreline of the cell
destabilizes and undergoes side-branching instabilities.

The results in the yield stress regime can be understood quantitatively from a linear
stability analysis. The repercussion on the wavelength of the instability as it follows from
a linear stability analysis is that the wavelength of maximum growth is finite even at vanishing
velocities. The results in the second and third regimes are more difficult to understand in a
quantitative fashion. Here, we find different behaviours for the different dilutions of the gel,
having nonetheless very similar shear-thinning exponents. We propose that the differences
might be due to normal stress effects [11]. For the third regime, the side-branching instabilities
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are non-linear secondary instabilities that are not fully understood to date; therefore, a
quantitative comparison with theory is impossible.

We propose a modified Darcy law (equation (3)). The effective viscosity can be compared
directly to the rheological measurements of the shear-rate-dependent viscosity; the main result
is that the results of the two independent experiments agree well with each other, and use of
the modified Darcy law (equation (3)) is therefore justified.

We have also recognized the mentioned three regimes in a circular Hele–Shaw cell. We
have also observed the dublon effect at very high velocities,an effect which was observed before
in the solidification and other problems of directional growth (figure 7). In sum, although our
systematic study of fingering in a well characterized system that exhibits a yield stress helps us
to understand some of the previous observations on fingering in complex fluids, a few puzzling
observations remain without explanation.
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